The code used in this tutorial is available!

Code can be found at industrial_training repository in doc folder. Use kinetic-devel branch.

Docker AWS

Demo #1 - Run front-end on in gazebo host and back-end in docker

Setup workspace

Front-end (run on host and only contains gui)

in terminal 1

mkdir -p ./training/front_ws/src
cd ./training/front_ws/src
gazebo -v
git clone -b gazebo7 https://github.com/fetchrobotics/fetch_gazebo.git
git clone https://github.com/fetchrobotics/robot_controllers.git
git clone https://github.com/fetchrobotics/fetch_ros.git
cd ..
catkin build fetch_gazebo fetch_description

Back-end (run in container)

In this step, we will create a docker image that has the executables we need:

  • run /bin/bash in the rosindustrial/core:indigo image then apt-get the package, commiting the result.
  • run /bin/bash in the rosindustrial/core:indigo image then build the package from source, commiting the result.
  • create a docker container using the fetch Dockerfile, which we will perform. https://gist.github.com/AustinDeric/242c1edf1c934406f59dfd078a0ce7fa
cd ../fetch-Dockerfile/
docker build --network=host -t rosindustrial/fetch:indigo .

Running the Demo

Run the front-end

Run the front end in terminal 1:

source devel/setup.bash
roslaunch fetch_gazebo playground.launch

Run the backend

There are multiple ways to perform this:

  • run /bin/bash in the fetch container and manually run the demo node.
  • run the demo node directly in the container, which is the method we will perform Run the back end in terminal 2:
docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo_demo demo.launch

Demo #2 - Run front-end on a web-server and back-end in docker

start the environment

docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo playground.launch headless:=true gui:=false

run the gazebo web server:

docker run -v "/home/aderic/roscloud/training/front_ws/src/fetch_gazebo/fetch_gazebo/models/test_zone/meshes/:/root/gzweb/http/client/assets/test_zone/meshes/" -v "/home/aderic/roscloud/training/front_ws/src/fetch_ros/fetch_description/meshes:/root/gzweb/http/client/assets/fetch_description/meshes" -it --network=host giodegas/gzweb /bin/bash

then run the server:

/root/gzweb/start_gzweb.sh && gzserver

run the demo in terminal 3:

docker run --network=host fetch roslaunch fetch_gazebo_demo demo.launch

Demo #3 Robot Web Tools

In this demo we will run an industrial robot URDF viewable in a browser In terminal 1 we will load a robot to the parameter server

mkdir -p abb_ws/src
git clone -b kinetic-devel https://github.com/ros-industrial/abb.git
docker run -v "/home/aderic/roscloud/training/abb_ws:/abb_ws" --network=host -it rosindustrial/core:kinetic /bin/bash
cd abb_ws
catkin build
source devel/setup.bash
roslaunch abb_irb5400_support load_irb5400.launch

in terminal 2 we will start the robot web tools:

docker run --network=host rosindustrial/viz:kinetic roslaunch viz.launch

in terminal 3 we will launch the webserver first we need to start a www folder

cp -r abb_ws/src/abb/abb_irb5400_support/ www/
user www-data;
worker_processes auto;
pid /run/nginx.pid;
events {
worker_connections 768;
}
http {
server{
location / {
root /data/www/;
}
}
}
view raw nginx.conf hosted with ❤ by GitHub
<!DOCTYPE html>
<html>
<head>
<title>ROS-I Viz</title>
<meta charset="utf-8" />
<script src="http://cdn.robotwebtools.org/threejs/current/three.min.js"></script>
<script src="http://cdn.robotwebtools.org/threejs/current/ColladaLoader.min.js"></script>
<script src="http://cdn.robotwebtools.org/ColladaAnimationCompress/current/ColladaLoader2.min.js"></script>
<script src="http://cdn.robotwebtools.org/threejs/current/STLLoader.min.js"></script>
<script src="http://cdn.robotwebtools.org/EventEmitter2/current/eventemitter2.min.js"></script>
<script src="http://cdn.robotwebtools.org/roslibjs/current/roslib.min.js"></script>
<script src="http://cdn.robotwebtools.org/ros3djs/current/ros3d.min.js"></script>
<script src="http://cdn.robotwebtools.org/jointstatepublisherjs/current/jointstatepublisher.min.js"></script>
<!-- Latest compiled and minified CSS -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<!-- Optional theme -->
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css" integrity="sha384-rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwl/Sp" crossorigin="anonymous">
<!-- Latest compiled and minified JavaScript -->
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script>
/**
* Setup all visualization elements when the page is loaded.
*/
function init() {
// Connect to ROS.
var ros = new ROSLIB.Ros({
url : 'ws://localhost:9090'
});
// Create the main viewer.
var viewer = new ROS3D.Viewer({
divID : 'robot_viz',
width : 800,
height : 600,
antialias : true
});
// Add a grid.
viewer.addObject(new ROS3D.Grid());
// Setup a client to listen to TFs.
var tfClient = new ROSLIB.TFClient({
ros : ros,
angularThres : 0.01,
transThres : 0.01,
rate : 10.0
});
// Setup the URDF client.
var urdfClient = new ROS3D.UrdfClient({
ros : ros,
tfClient : tfClient,
path : 'http://localhost/',
rootObject : viewer.scene,
loader: ROS3D.COLLADA_LOADER_2
});
var jsp = new JOINTSTATEPUBLISHER.JointStatePublisher({
ros : ros,
divID : 'sliders'
});
}
</script>
</head>
<body onload="init()">
<div class="well">
</div>
<div class="row">
<div class="col-xs-3">
<div id="sliders"></div>
</div>
<div class="col-xs-9">
<div id="robot_viz"></div>
</div>
</div>
</body>
</html>
view raw viz.html hosted with ❤ by GitHub
docker run -v "/home/aderic/roscloud/training/www:/data/www" -v "/home/aderic/roscloud/training/nginx_conf/:/etc/nginx/local/" -it --network=host rosindustrial/nginx:latest /bin/bash
nginx -c /etc/nginx/local/nginx.conf

Open Source Feedback

See something that needs improvement? Please open a pull request on this GitHub page