The code used in this tutorial is available!
Code can be found at industrial_training repository in doc folder. Use kinetic-devel branch.
Docker AWS¶
Demo #1 - Run front-end on in gazebo host and back-end in docker¶
Setup workspace¶
Front-end (run on host and only contains gui)¶
in terminal 1
mkdir -p ./training/front_ws/src
cd ./training/front_ws/src
gazebo -v
git clone -b gazebo7 https://github.com/fetchrobotics/fetch_gazebo.git
git clone https://github.com/fetchrobotics/robot_controllers.git
git clone https://github.com/fetchrobotics/fetch_ros.git
cd ..
catkin build fetch_gazebo fetch_description
Back-end (run in container)¶
In this step, we will create a docker image that has the executables we need:
- run /bin/bash in the rosindustrial/core:indigo image then apt-get the package, commiting the result.
- run /bin/bash in the rosindustrial/core:indigo image then build the package from source, commiting the result.
- create a docker container using the fetch Dockerfile, which we will perform. https://gist.github.com/AustinDeric/242c1edf1c934406f59dfd078a0ce7fa
cd ../fetch-Dockerfile/
docker build --network=host -t rosindustrial/fetch:indigo .
Running the Demo¶
Run the front-end¶
Run the front end in terminal 1:
source devel/setup.bash
roslaunch fetch_gazebo playground.launch
Run the backend¶
There are multiple ways to perform this:
- run /bin/bash in the fetch container and manually run the demo node.
- run the demo node directly in the container, which is the method we will perform Run the back end in terminal 2:
docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo_demo demo.launch
Demo #2 - Run front-end on a web-server and back-end in docker¶
start the environment
docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo playground.launch headless:=true gui:=false
run the gazebo web server:
docker run -v "/home/aderic/roscloud/training/front_ws/src/fetch_gazebo/fetch_gazebo/models/test_zone/meshes/:/root/gzweb/http/client/assets/test_zone/meshes/" -v "/home/aderic/roscloud/training/front_ws/src/fetch_ros/fetch_description/meshes:/root/gzweb/http/client/assets/fetch_description/meshes" -it --network=host giodegas/gzweb /bin/bash
then run the server:
/root/gzweb/start_gzweb.sh && gzserver
run the demo in terminal 3:
docker run --network=host fetch roslaunch fetch_gazebo_demo demo.launch
Demo #3 Robot Web Tools¶
In this demo we will run an industrial robot URDF viewable in a browser In terminal 1 we will load a robot to the parameter server
mkdir -p abb_ws/src
git clone -b kinetic-devel https://github.com/ros-industrial/abb.git
docker run -v "/home/aderic/roscloud/training/abb_ws:/abb_ws" --network=host -it rosindustrial/core:kinetic /bin/bash
cd abb_ws
catkin build
source devel/setup.bash
roslaunch abb_irb5400_support load_irb5400.launch
in terminal 2 we will start the robot web tools:
docker run --network=host rosindustrial/viz:kinetic roslaunch viz.launch
in terminal 3 we will launch the webserver first we need to start a www folder
cp -r abb_ws/src/abb/abb_irb5400_support/ www/
docker run -v "/home/aderic/roscloud/training/www:/data/www" -v "/home/aderic/roscloud/training/nginx_conf/:/etc/nginx/local/" -it --network=host rosindustrial/nginx:latest /bin/bash
nginx -c /etc/nginx/local/nginx.conf
Open Source Feedback
See something that needs improvement? Please open a pull request on this GitHub page